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Abstract: The Burr type XII (BurrXII) distribution is very flexible for modeling and has earned much
attention in the past few decades. In this study, the maximum likelihood estimation method and
two Bayesian estimation procedures are investigated based on constant-stress accelerated life test
(ALT) samples, which are obtained from the doubly truncated three-parameter BurrXII distribution.
Because computational difficulty occurs for maximum likelihood estimation method, two Bayesian
procedures are suggested to estimate model parameters and lifetime quantiles under the normal
use condition. A Markov Chain Monte Carlo approach using the Metropolis–Hastings algorithm
via Gibbs sampling is built to obtain Bayes estimators of the model parameters and to construct
credible intervals. The proposed Bayesian estimation procedures are simple for practical use, and the
obtained Bayes estimates are reliable for evaluating the reliability of lifetime products based on ALT
samples. Monte Carlo simulations were conducted to evaluate the performance of these two Bayesian
estimation procedures. Simulation results show that the second Bayesian estimation procedure
outperforms the first Bayesian estimation procedure in terms of bias and mean squared error when
users do not have sufficient knowledge to set up hyperparameters in the prior distributions. Finally,
a numerical example about oil-well pumps is used for illustration.

Keywords: accelerated life test; Burr type XII distribution; Markov chain Monte Carlo; maximum
likelihood estimation; Newton–Raphson method

1. Introduction

1.1. Historical Review and Literature Review

Dr. I. W. Burr was the pioneer to propose Burr type distributions in 1942 [1]. Since then, the
two-parameter Burr type XII (BurrXII) distribution has earned more attention and has been widely
used for reliability inferences because of the flexibility for modeling via using its two-shape parameters.
Tadikamalla [2] extended the two-parameter BurrXII distribution to be a three-parameter BurrXII
distribution by introducing one scale parameter. The three-parameter BurrXII distribution is a
generalized version of the BurrXII distribution and includes the gamma, bell-shaped, lognormal,
and log-logistic distributions as special cases. The three-parameter BurrXII distribution is also an
asymptotic limiting case of the Weibull and Pareto type I distributions.

Al-Hussaini [3] extended the theorem established by Galambos and Kotz [4] to characterize the
two-parameter BurrXII distribution. Zimmer et al. [5] studied the reliability applications for the two-
parameter BurrXII distribution. Jang et al. [6] used Bayesian estimation method to infer the parameters
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of the two-parameter BurrXII distribution with general progressive type II censoring samples. Ismail
and Khalid [7] studied the parameter estimation method using expectation-maximization algorithm for
BurrXII distributions. More applications of the BurrXII distributions can be found in Thupeng [8] for
modeling the maximum levels of nitrogen dioxide; in Nadar and Papadopoulos [9] for modeling the
record data through using Bayesian estimation methods; in Panahi and Sayyareh [10] for predicating
type II censored order statistics; in Xin et al. [11], in which the authors developed a Bayesian estimation
procedure through using the Markov Chain Monte Carlo (MCMC) approach for parameter estimation
based on type II censored samples from the three-parameter BurrXII distribution; and in Xin et al. [12],
in which they used particle swarm optimization methods to infer the three-parameter BurrXII
distribution parameters based on type I censoring samples. Chaturvedi et al. [13] proposed preliminary
test estimators for the power parameters of the three-parameter BurrXII distribution and the reliability
functions based on the maximum likelihood estimator, uniformly minimum variance unbiased
estimator, and best invariant estimator as well as proposed empirical Bayes estimator. Tahir et al. [14]
studied Bayesian and maximum likelihood estimation methods for the three-component mixture of
BurrXII distributions based on doubly censored data. EL-Sagheer et al. [15] studied Bayesian and
maximum likelihood estimation methods for the three-parameter BurrXII distribution with a unified
hybrid censoring scheme. Byrnes et al. [16] studied the performance of using different loss functions
to implement the MCMC Bayesian estimation method for estimating the parameter δ = P(X < Y),
where X and Y follow two-parameter BurrXII distributions. EL-Sagheer et al. [17] proposed Bayesian
inference methods for the three-parameter BurrXII distribution based on randomly censoring samples.

Because of the advance technologies on manufacturing, most modern products are highly reliable.
It is difficult to collect the complete lifetime of a modern product at the normal use condition for
reliability evaluations. Under this situation, an accelerated life test (ALT) could be an efficient
procedure to save test time and cost because engineers can accelerate the speed of a unit’s failure
by enhancing the stress used during an ALT. Constant-stress ALT, step-stress ALT, and ramp-stress
ALT are three widely used ALT processes in practical applications. Compared with a step-stress
ALT, the constant-stress ALT method does not need a memory assumption but requires more sample
resources for life testing. Moreover, the constant-stress ALT method is easy for implementation.
Ali Mouse [18] proposed an empirical Bayes estimation method for BurrXII distributions under an
ALT with type II censoring. Ahmad and Islam [19] proposed optimal design methods of ALT for
BurrXII distributions with type I censoring and periodic inspection. Abd-Elfattah et al. [20] studied
maximum likelihood estimation methods for BurrXII distributions based on step-stress partially
ALT samples and developed the asymptotic variance-covariance matrix of the estimators. Under
the progressive type II censoring, Abdel-Hamid [21] studied the maximum likelihood estimation
method and provided a Fisher information matrix to implement reliability inferences for BurrXII
distributions under the constant-partially accelerated life testing. Srivastava and Mittal [22] proposed
optimal designs for BurrXII distributions through using a multi-objective ramp-stress ALT method.
Zhao et al. [23] proposed a simple constant-stress ALT to collect type I progressively hybrid censored
samples from BurrXII distribution and obtained the maximum likelihood estimators of the model
parameters via using numerical methods. They also obtained approximate confidence intervals
of the distribution parameters through using the normal approximation and bootstrap methods.
Ismail and Al-Habardi [24] proposed interval inference methods to estimate BurrXII distribution
parameters under the step-stress partially accelerated life testing. Prakash [25] proposed methods to
find approximate confidence intervals through using normal approximations and bootstrap procedure
under the constant-partially ALT. Ismail and Al-Habardi [26] proposed optimal plans for step-stress
ALT for the BurrXII distribution with failure-censored samples.

In some occasions, truncation is a required condition for lifetime modeling in practical
environments due to the ability to record data or it is even known that the failure occurs over or
below a threshold or within a specific timespan. Okasha and Matter [27] used three-parameter BurrXII
distribution to model heavy tailed lifetime data and proposed parameter estimation methods for the
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doubly truncated three-parameter BurrXII distribution. Kantar and Usta [28] used the upper-truncated
version of Weibull distribution for modeling wind speed data. They also proposed methods to
estimate wind power density. Wang [29] developed interval inference methods for estimating general
lower-truncated distribution parameters based on double type II censoring samples. He et al. [30]
presented an optimization design method for implementing reliability analysis with truncated normal
random variables. Dörre [31] proposed a Bayesian estimation method for lifetime inference based on
doubly truncated time-restricted samples. New Bayesian estimation methods about lifetime inferences
can be found in the literature. Imani and Braga-Neto [32] proposed an approximate minimum mean
square error filtering algorithm and smoothing algorithm based on the auxiliary particle filter method
from sequential Monte Carlo theory. For overcoming the heavy-censoring problem for Weibull mixture
parameters estimation, Ducros and Pamphile [33] proposed a Bayesian bootstrap method to implement
reliability or warranty analysis based on nonhomogeneous lifetime samples. Jaheen and Okasha [34]
proposed expected Bayesian estimation for the BurrXII model based on type II censoring. Han [35]
studied the expected Bayesian estimation and its E-posterior risk for the failure rate of exponential
distribution. Afify et al. [36] proposed maximum likelihood estimation and Bayesian estimation
methods to estimate the parameters of the generalized odd log-logistic exponential distribution.

1.2. Motivation and Organization

Based on our best knowledge, no literature has discussed using ALT methods to infer the reliability
for the doubly truncated three-parameter BurrXII distribution. Because the likelihood function based
on ALT samples from the doubly truncated three-parameter BurrXII distribution is very complicated,
the explicit forms of maximum likelihood estimators for the model parameters cannot be derived.
Moreover, numerical methods via gradient algorithms cannot help to obtain the maximum likelihood
estimates (MLEs) of parameters due to the divergence problem. In this study, we proposed two
Bayesian estimation procedures to obtain Bayes estimators of the model parameters and the credible
intervals of quantiles.

The rest of this paper is organized as follows: The doubly truncated three-parameter Burr type XII
distribution and ALT model are presented in Section 2. Moreover, the maximum likelihood estimation
method and two Bayesian estimation procedures using the Metropolis–Hastings algorithm via Gibbs
sampling to implement the MCMC approach are developed. Additionally, the credible intervals of
quantiles of the doubly truncated three-parameter BurrXII distribution at the normal use condition are
obtained. Monte Carlo simulations are conducted for evaluating the performance of the two proposed
Bayesian estimation procedures in Section 3. One numerical example about oil-well pumps is used
in Section 4 for illustrating the applications of the proposed Bayesian estimation procedure. Some
concluding remarks are given in Section 5.

2. The Doubly Truncated Three-Parameter Burrxii Distribution and ALT Model

2.1. The Statistical Model

Let the probability density function (PDF) and cumulative distribution function (CDF) of a
reliable unit lifetime, X, be f (x|θ) and F(x|θ), respectively, where θ is the vector of distribution
parameters. Given two positive constants ν and µ(≤ ν) for truncation, it is easy to show that∫ ν

µ f (x|θ)dx = F(ν|θ)− F(µ|θ) and ßntν
µg(x|θ)dx = 1, where g(x|θ) = f (x|θ)

F(ν|θ)−F(µ|θ) for 0 < µ ≤ x ≤ ν.

Let G(x|θ) =
∫ x

µ g(t|θ)dt = F(x|θ)−F(µ|θ)
F(ν|θ)−F(µ|θ) for µ < x < ν. Then, g(x|θ) and G(x|θ) can be defined as

the doubly truncated version of f (x|θ) and F(x|θ) over the domain µ < x < ν, respectively. When
the three-parameter BurrXII distribution with θ = (α, k, c) is considered, the f (x|θ) and F(x|θ) can be
represented, respectively, by

f (x|θ) = ck
α

( x
α

)c−1 (
1 +

( x
α

)c)−(k+1)
, c, k, α, x > 0, (1)
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and

F(x|θ) = 1−
(

1 +
( x

α

)c)−k
, c, k, α, x > 0, (2)

where c and k are the inner and outer shape parameters, respectively, and α is the scale parameter.
The doubly truncated version of the three-parameter BurrXII distribution, BurrXIIµ,ν(θ), has the
following PDF and CDF:

g(x|θ) = 1
dµ,ν

ck
α

( x
α

)c−1 (
1 +

( x
α

)c)−(k+1)
, c, k, α > 0, µ ≤ x ≤ ν, (3)

and

G(x|θ) =
1

dµ,ν

{(
1 +

(µ

α

)c)−k
−
(

1 +
( x

α

)c)−k}
, c, k, α > 0, µ ≤ x ≤ ν, (4)

respectively, where dµ,ν =
(

1 +
( µ

α

)c
)−k
−
(

1 +
(

ν
α

)c
)−k

. The survival function of the BurrXIIµ,ν(θ)

can be obtained by

Sg(x|θ) = 1− G(x|θ) = 1− 1
dµ,ν

{(
1 +

(µ

α

)c)−k
−
(

1 +
( x

α

)c)−k}
, c, k, α > 0, µ ≤ x ≤ ν. (5)

Okasha and Matter [27] had established some statistical properties for the doubly truncated
three-parameter BurrXII distribution.

Let xp be the pth quantile of BurrXIIµ,ν(θ) such that G(xp|θ) = p for 0 < p < 1. It can be show that

xp = α

(((
1 +

(µ

α

)c)−k
− p× dµ,ν

)−1/k

− 1.0

)1/c

. (6)

BurrXIIµ,ν(θ) is a generalized version of the BurrXII(θ) distribution. When µ = 0 and ν→ ∞, G(·|θ)
reduces to F(·|θ) and G(·|θ) reduces to the upper truncated BurrXII(θ) as µ→ 0. When ν→ ∞, G(x|θ)
reduces to the lower truncated BurrXII(θ). When α = 1, BurrXIIµ,ν(θ) reduces to doubly truncated
two-parameter BurrXII distribution.

2.2. The ALT Model and Parameter Estimation Methods

Let the lifetimes of reliable units be obtained through using a constant-stress ALT method with
one accelerated variable, denoted by S. The stress levels of S are denoted by s1 ≤ s2 ≤ ... ≤ sm. Assume
that the outer shape and scale parameters are dependent upon the stress via the link functions ki ≡
k(si) = b0 + b1si and αi ≡ α(si) = a0 + a1si , respectively, for i = 1, 2, ..., m, and the inner parameter is
free from the stress. If the sample size for each stress of the ALT is n (that is, n1 = n2 = ... = nm = n)
and the observed lifetimes under the ALT are denoted by x = {xij, j = 1, 2, ..., ni, i = 1, 2, ..., m},
because the constant-stress ALT design method is used, the sample {xij, j = 1, 2, ..., ni, i = 1, 2, ..., m} is
independent. Let Θ = (a0, a1, c, b0, b1). The likelihood and log-likelihood functions can be presented by

L(Θ|x) =
m

∏
i=1

n

∏
j=1

cki
αi

( xij
αi

)c−1 (
1 +

( xij
αi

)c)−ki−1

(
1 +

(
µ
αi

)c)−ki
−
(

1 +
(

ν
αi

)c)−ki
, (7)
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and

`(Θ|x) = m× n ln(c) + n
m

∑
i=1

ln(ki) + (c− 1)
m

∑
i=1

n

∑
j=1

ln(xij)

−cn
m

∑
i=1

ln(αi)−
m

∑
i=1

n

∑
j=1

(ki + 1) ln
[

1 +
( xij

αi

)c]

−n
m

∑
i=1

ln

{(
1 +

(
µ

αi

)c)−ki

−
(

1 +
(

ν

αi

)c)−ki
}

, (8)

respectively.
The maximum likelihood estimates (MLEs) of a0, a1, b0, b1, and c can be obtained through solving

the likelihood equations `a0 = 0, `a1 = 0, `b0 = 0, `b1 = 0, and `c = 0 simultaneously, where

`a0 =
∂`(Θ|x)

∂a0
= −cn

m

∑
i=1

1
αi

+ c
m

∑
i=1

n

∑
j=1

(ki + 1)xc
ij

αi(α
c
i + xc

ij)

−cn
m

∑
i=1

ki
[αc

i + µc]−ki−1µc − [αc
i + νc]−ki−1νc

αi[(α
c
i + µc)−ki − (αc

i + νc)−ki ]
, (9)

`a1 =
∂`(Θ|x)

∂a1
= −cn

m

∑
i=1

si
αi

+ c(ki + 1)
m

∑
i=1

n

∑
j=1

sixc
ij

αc+1
i

−cn
m

∑
i=1

siki
[αc

i + µc]−ki−1µc − [αc
i + νc]−ki−1νc

αi[(α
c
i + µc)−ki − (αc

i + νc)−ki ]
, (10)

`b0 =
∂`(Θ|x)

∂b0
= n

m

∑
i=1

1
ki
−

m

∑
i=1

n

∑
j=1

ln
[

1 +
( xij

αi

)c]

+n
m

∑
i=1

(αc
i + µc)−ki ln

[
1 +

(
µ
αi

)c]
− (αc

i + νc)−ki ln
[
1 +

(
ν
αi

)c]
(αc

i + µc)−ki − (αc
i + νc)−ki

, (11)

`b1 =
∂`(Θ|x)

∂b1
= n

m

∑
i=1

si
ki
−

m

∑
i=1

n

∑
j=1

si ln
[

1 +
( xij

αi

)c]

+n
m

∑
i=1

si

(αc
i + µc)−ki ln

[
1 +

(
µ
αi

)c]
− (αc

i + νc)−ki ln
[
1 +

(
ν
αi

)c]
(αc

i + µc)−ki − (αc
i + νc)−ki

(12)

and

`c =
∂`(Θ|x)

∂c
=

mn
c

+
m

∑
i=1

n

∑
j=1

ln(xij)− n
n

∑
i=1

ln(αi)

−
m

∑
i=1

n

∑
j=1

ki + 1

1 +
( xij

αi

)c

( xij

αi

)c
ln
( xij

αi

)
+ n

m

∑
i=1

ki. (13)

No explicit forms of the MLEs, â0, â1, b̂0, b̂1, and ĉ can be found. Moreover, it is not tractable to
obtain the values of â0, â1, b̂0, b̂1, and ĉ even by using numerical methods to simultaneously solve all
five likelihood equations. One typical numerical method is the Newton–Rapson method (Newton
iterative method). Many software packages are available for users to implement the Newton–Rapson



Mathematics 2020, 8, 162 6 of 23

method. Hence, the Newton–Rapson method has been widely used by statisticians and engineers to
obtain MLEs via solving nonlinear likelihood equations. However, the Newton–Rapson method is a
gradient method via the iterative procedure in which the solution quality depends on the selection of
initial values of parameters. It is not easy to set up good initial values for all parameters in the current
case. Hence, Bayes estimates are obtained to replace the MLEs for estimating model parameters.

Let the prior distribution of Θ be π(Θ), which is defined by

π(Θ) = πa0(a0)× πa1(a1)× πc(c)× πb0(b0)× πb1(b1). (14)

Therefore, the posterior distribution of Θ, given data, can be represented by

π(Θ|x) ∝ π(Θ)× L(Θ|x). (15)

The full conditional posterior distribution for each model parameter can be expressed as follows:

πa0(a0|a1, b0, b1, c, x) ∝ πa0(a0)× L(Θ|x),
πa1(a1|a0, b0, b1, c, x) ∝ πa1(a1)× L(Θ|x),
πc(c|a0, a1, b0, b1, x) ∝ πc(c)× L(Θ|x),

πb0(b0|a0, a1, b1, c, x) ∝ πb0(b0)× L(Θ|x),

and
πb1(b1|a0, a1, b0, c, x) ∝ πb1(b1)× L(Θ|x).

Panahi and Sayyareh [10] and Jaheen and Okasha [34] suggested to use gamma prior distributions
as informative prior distributions to obtain Bayes estimates. In this study, the follow prior distributions
are utilized for the proposed Bayesian estimation procedures:

πa0(a0) =
βδ1

1
Γ(δ1)

aδ1−1
0 exp{−β1a0}, a0, β1 ≥ 0, δ1 > 0, (16)

πa1(a1) ∝ constant (17)

πc(c) =
βδ2

2
Γ(δ2)

cδ2−1 exp{−β2c}, c, β2 ≥ 0, δ2 > 0, (18)

πb0(b0) =
βδ3

3
Γ(δ3)

bδ3−1
0 exp{−β3b0}, b0, β3 ≥ 0, δ3 > 0, (19)

and
πb1(b1) ∝ constant. (20)

When the aforementioned gamma distributions are replaced by πa0(a0) ∝ constant, πc(c) ∝
constant, and πb0(b0) ∝ constant, the prior distribution π(Θ) is non-informative. The obtained Bayes
estimates via using non-informative prior distributions are closed to the MLEs of the model parameters.
If users have sufficient knowledge to set up the hyperparameters, βi and δi, i = 1, 2, 3, the obtained
Bayes estimates via using informative prior distributions have better quality than those obtained via
using non-informative prior distributions.

The Bayes estimator of Θ, denoted by Θ̃B, is the estimator that minimizes the Bayes risk function,
R(Θ, Θ̃B) = Eπ{δ(Θ, Θ̃B)}, where δ(Θ, Θ̃B) is the loss incurred due to utilizing Θ̃B. In this paper, the
square loss function, δ(Θ, Θ̃B) = (Θ̃B −Θ)2 is used for the Bayesian estimation method and the Bayes
estimate of Θ, denoted by Θ̃B = (ã0, ã1, b̃0, b̃1, c̃), is the mean of the posterior distribution. The posterior
distribution in Equation (15) is very complicated, and the explicit forms of the Bayes estimates are not
available. Therefore, a Metropolis–Hastings algorithm via Gibbs sampling is proposed based on the
following steps and Algorithm 1 to implement the MCMC method to obtain the Bayes estimate of Θ.
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Initial Step: Let i = 0 and a(0)0 , a(0)1 , b(0)0 , b(0)1 , and c(0) be the initial states of a0, a1, b0, b1, and c,
respectively.

Step 1: Propose the transition probabilities qj(j(∗)|j(i)) from j(i) to j(∗) for j = a0, a1, b0, b1, c.
Step 2: Implement Step 2.1 to Step 2.5 N times for i = 0, 1, 2, ..., N, where N is a huge number.

Step 2.1: Generate a(∗)0 ∼ qa0(a(∗)0 |a
(i)
0 ) and u ∼ U(0, 1), where U(0, 1) is the uniform distribution

over the domain of (0,1). Update a(i+1)
0 by

a(i+1)
0 =

 a(∗)0 , u ≤ min
{

1,
π(a(∗)0 |a

(i)
1 ,b(i)0 ,b(i)1 ,c(i);x)qa0 (a(i)0 |a

(∗)
0 )

π(a(i)0 |a
(i)
1 ,b(i)0 ,b(i)1 ,c(i);x)qa0 (a(∗)0 |a

(i)
0 )

}
,

a(i)0 , otherwise.
(21)

Step 2.2: Generate a(∗)1 ∼ qa1(a(∗)1 |a
(i)
1 ) and u ∼ U(0, 1). Update a(i+1)

1 by

a(i+1)
1 =

 a(∗)1 , u ≤ min
{

1,
π(a(∗)1 |a

(i+1)
0 ,b(i)0 ,b(i)1 ,c(i);x)qa1 (a(i)1 |a

(∗)
1 )

π(a(i)1 |a
(i+1)
0 ,b(i)0 ,b(i)1 ,c(i);x)qa1 (a(∗)1 |a

(i)
1 )

}
,

a(i)1 , otherwise.
(22)

Step 2.3: Generate b(∗)0 ∼ qb0(b
(∗)
0 |b

(i)
0 ) and u ∼ U(0, 1). Update b(i+1)

0 by

b(i+1)
0 =

 b(∗)0 , u ≤ min

{
1,

π(b(∗)0 |a
(i+1)
0 ,a(i+1)

1 ,b(i)1 ,c(i);x)qb0
(b(i)0 |b

(∗)
0 )

π(b(i)0 |a
(i+1)
0 ,a(i+1)

1 ,b(i)1 ,c(i);x)qb0
(b(∗)0 |b

(i)
0 )

}
,

b(i)0 , otherwise.

(23)

Step 2.4: Generate b(∗)1 ∼ qb1(b
(∗)
1 |b

(i)
1 ) and u ∼ U(0, 1). Update b(i+1)

1 by

b(i+1)
1 =

 b(∗)1 , u ≤ min

{
1,

π(b(∗)1 |a
(i+1)
0 ,a(i+1)

1 ,b(i+1)
0 ,c(i);x)qb1

(b(i)1 |b
(∗)
1 )

π(b(i)1 |a
(i+1)
0 ,a(i+1)

1 ,b(i+1)
0 ,c(i);x)qb1

(b(∗)1 |b
(i)
1 )

}
,

b(i)1 , otherwise.

(24)

Step 2.5: Generate c(∗) ∼ qc(c(∗)|c(i)) and u ∼ U(0, 1). Update c(i+1) by

c(i+1) =

 c(∗), u ≤ min
{

1, π(c(∗) |a(i+1)
0 ,a(i+1)

1 ,b(i+1)
0 ,b(i+1)

1 ;x)qc(c(i) |c(∗))
π(c(i) |a(i+1)

0 ,a(i+1)
1 ,b(i+1)

0 ,b(i+1)
1 ;x)qc(c(∗) |c(i))

}
,

c(i), otherwise.
(25)

Step 3: The Bayes estimates can be obtained by θ̃j =
1

N−M ∑N
j=M+1 θ

(i)
j , θj = a0, a1, b0, b1, and c, where

the first M(< N) chains are used for burn-in and all burn-in chains will be removed from the
computation to obtain the Bayes estimates.

Two Bayesian estimation procedures, denoted by procedure BE-I and procedure BE-II, are given
as the following to obtain reliable Bayes estimates.
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Algorithm 1 The Metropolis-Hastings algorithm via Gibbs sampling.

1: Initial Step.
2: Step 1.
3: Step 2 with i=0.
4: loop:
5: if i < N then do Step 2.1-Step 2.5
6: i + 1← i.
7: goto loop.
8: close;

9: Remove the first N chains for burn-in.
10: Obtain Bayes estimates via using Step 3.

Procedure BE-I: Let the domain of the model parameters be Da0 , Da1 , Db0 , Db1 , and Dc. Uniform
distributions over the domains of Da0 , Da1 , Db0 , Db1 , and Dc, respectively, are used to be the
transition probabilities to implement the Metropolis–Hastings algorithm via Gibbs sampling to
obtain Bayes estimates.

In many occasions, users may not have sufficient knowledge about the model parameters and
they need to use wide domains for Da0 , Da1 , Db0 , Db1 , and Dc. Using uniform distributions with wide
domains as transition probabilities for implementing the Metropolis–Hastings algorithm via Gibbs
sampling will make the Markov chains converge slowly with less efficiency to search accurate and
precise Bayes estimates. Hence, the following procedure BE-II is suggested to improve the performance
of procedure BE-I.

Procedure BE-II:

Step 1: Obtain 100 sets of Bayes estimates through using procedure BE-I, and denote them by {ã0,j, j =
1, 2, ..., 100}, {ã1,j, j = 1, 2, ..., 100}, {b̃0,j, j = 1, 2, ..., 100}, {b̃1,j, j = 1, 2, ..., 100}, and {c̃j, j =
1, 2, ..., 100}. Find the mean of each set of Bayes estimates with 5% of them trimmed from each
end. Denote the trimmed mean by ā0, ā1, b̄0, b̄1, and c̄, respectively.

Step 2: Implement the Metropolis–Hastings algorithm via Gibbs sampling with the normal
distributions, N(ā0, 1), N(ā1, 1), N(b̄0, 1), N(b̄1, 1), and N(c̄, 1), as the transition probabilities to
obtain Bayes estimates. That is, the MCMC method is implemented based on the knowledge that
is obtained from Step 1.

The Markov chains of {ã0,j, j = 1, 2, ..., N −M}, {ã1,j, j = 1, 2, ..., N −M}, {b̃0,j, j = 1, 2, ..., N −
M}, {b̃1,j, j = 1, 2, ..., N −M}, and {c̃j, j = 1, 2, ..., N −M} and Equation (6) can be used to establish
the empirical distribution of the quantile estimator of xp, denoted by x̃p, at the normal use condition.
Denote the empirical distribution of x̃p by F̂x̃p(t). The γth and (1 − γ)th quantiles, tγ = F̂−1

x̃p
(γ)

and t1−γ = F̂−1
x̃p

(1− γ), can be used to construct the (1− 2γ)% creditable interval of xp. Hence, the
(1− 2γ)% creditable interval of xp can be denoted by (tγ, t1−γ).

3. Monte Carlo Simulations

In this section, the performance of procedures BE-I and BE-II is evaluated by conducting Monte
Carlo simulations through using R codes. Procedures BE-I and BE-II with N = 12, 000 and M = 2000
are used to obtain the Bayes estimates; that is, 12,000 Markov chains are generated and the first 2000
Markov chains are removed for burn-in to obtain the Bayes estimates for procedure BE-I and procedure
BE-II. All the simulation procedures are done by using R codes.

The constant-stress ALT in Monte Carlo simulations is set up to have two normalized stress
levels: the low stress level is denoted by s1 = sL = 0.45 and the high stress level is denoted by
s2 = sH = 1. The parameters a0 = 12, a1 = −5, b0 = 6, and b1 = 2 are used in the link functions
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ki = b0 + b1si and αi = a0 + a1si to generate samples from the doubly truncated three-parameter
BurrXII distribution with parameters ki, αi, and c = 2.5 for i = 1, 2, µ = 0, and ν = 20. It can be
shown that the normal use condition sample follows the doubly truncated BurrXII(c, k0, α0) with
k0 = b0 = 6, α0 = a0 = 12, c = 2.5, µ = 0, and ν = 20. In the simulation study, ALT samples
with sizes (n1, n2) = (10, 10), (20, 20), (30, 30), and (50, 50) are generated from the doubly truncated
BurrXII(c, ki, αi), i = 1, 2. Procedures BE-I and BE-II are used to search the Bayes estimates of the
model parameters.

Let Da0 = {1 ≤ a0 ≤ 20}, Da1 = {−10 ≤ a1 ≤ 0}, Db0 = {0 ≤ b0 ≤ 10}, Db1 = {1 ≤ b1 ≤ 5}, and
Dc = {1 ≤ a0 ≤ 10} be the domains of the model parameters to implement the Metropolis–Hastings
algorithm via Gibbs sampling described in Section 2. We hope that the Bayes estimate is close to the
MLEs. Hence, non-informative prior distributions are used. The Bayes estimate can be obtained based
on the sample mean from the last 10,000 Markov chains after removing the leading 2000 Markov chains
for burn-in.

Repeat procedures BE-I and BE-II 1000 times, respectively. The relative bias (RB) and
relative square root of mean square error (RsqMSE) of parameter δ are obtained based on the
following equations:

RB =
¯̃δ− δ

δ
(26)

and

RsqMSE =

√
MSE
|δ| , (27)

where ¯̃δ = ∑1000
i=1 δ̃i/1000, MSE = 1

1000 ∑1000
i=1 (δ̃i − δ)2, and δ̃ can be a0, a1, b0, b1, or c. The simulation

results are reported in Tables 1 and 2. In view of Tables 1 and 2, we find that procedure BE-II
outperforms procedure BE-I with smaller RB and a smaller RsqMSE for almost all the cases shown
in Tables 1 and 2. These results indicate that the obtained Bayes estimates via using procedure BE-II
are closer to their true values than the obtained Bayes estimates via using procedure BE-I, generally.
Moreover, procedure BE-II can provide more reliable estimation results with a smaller RsqMSE than
procedure BE-I. The boxplots in Figures 1–5 also indicate that the obtained Bayes estimates via using
procedure BE-II are more reliable than those obtained via using procedure BE-I.

Table 1. The relative bias (RB) of Bayes estimates for n1 = n2 = 10, 20, 30, and 50.

(n1, n2) Procedure a0 a1 b0 b1 c

(10, 10) BE-I −0.1415 0.1666 −0.0540 0.5020 0.9080
BE-II −0.1399 0.0460 −0.1136 0.0829 0.8557

(20, 20) BE-I −0.0710 0.1347 −0.0710 0.4849 0.7307
BE-II −0.1060 0.0443 −0.0959 0.1443 0.5903

(30, 30) BE-I −0.0247 0.0924 −0.0665 0.4818 0.5595
BE-II −0.0309 0.0545 −0.0378 0.2453 0.3749

(50, 50) BE-I 0.0614 −0.0983 −0.1629 0.2560 0.2364
BE-II 0.0564 −0.0849 −0.1117 0.4096 −0.0068
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Table 2. The relative square root of mean square errors (RsqMSEs) of Bayes estimates for n1 = n2 = 10,
20, 30, and 50.

(n1, n2) Procedure a0 a1 b0 b1 c

(10, 10) BE-I 0.3578 0.3238 0.2427 0.5961 1.0592
BE-II 0.1422 0.0995 0.1300 0.1372 0.8575

(20, 20) BE-I 0.3594 0.2971 0.2377 0.5674 0.9505
BE-II 0.1073 0.0756 0.1126 0.1691 0.5916

(30, 30) BE-I 0.3907 0.2952 0.2339 0.5639 0.8834
BE-II 0.0353 0.0707 0.0586 0.2541 0.3790

(50, 50) BE-I 0.3921 0.3458 0.2777 0.4370 0.7075
BE-II 0.0601 0.0963 0.1165 0.4134 0.1063

n.I=10 n.II=10 n.I=20 n.II=20 n.I=30 n.II=30 n.I=50 n.II=50

5
10

15

Figure 1. The boxplots of 1000 Bayes estimates of a0, where “n.I” and “n.II” indicate that procedures
BE-I and BE-II are implemented with sample size n, respectively.

n.I=10 n.II=10 n.I=20 n.II=20 n.I=30 n.II=30 n.I=50 n.II=50

−
10

−
8

−
6

−
4

−
2

Figure 2. The boxplots of 1000 Bayes estimates of a1, where “n.I” and “n.II” indicate that procedures
BE-I and BE-II are implemented with sample size n, respectively.
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n.I=10 n.II=10 n.I=20 n.II=20 n.I=30 n.II=30 n.I=50 n.II=50

2
4

6
8

10

Figure 3. The boxplots of 1000 Bayes estimates of b0, where “n.I” and “n.II” indicate that procedures
BE-I and BE-II are implemented with sample size n, respectively.

n.I=10 n.II=10 n.I=20 n.II=20 n.I=30 n.II=30 n.I=50 n.II=50

0
1

2
3

4
5

Figure 4. The boxplots of 1000 Bayes estimates of b1, where “n.I” and “n.II” indicate that procedures
BE-I and BE-II are implemented with sample size n, respectively.

n.I=10 n.II=10 n.I=20 n.II=20 n.I=30 n.II=30 n.I=50 n.II=50

2
4

6
8

10

Figure 5. The boxplots of 1000 Bayes estimates of c, where “n.I” and “n.II” indicate that procedures
BE-I and BE-II are implemented with sample size n, respectively.
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If users have sufficient knowledge to set up the hyperparameters and to use informative prior
distributions to implement the proposed Bayesian estimation procedures, it is easier to obtain reliable
Bayes estimates of a0, a1, b0, b1, and c. An additional simulation study is conducted to verify the
performance of the Bayesian estimation procedures through using informative prior distributions.
Following the parameters a0 = 12, a1 = −5, b0 = 6, b1 = 2, and c = 2.5 that are used for
simulation in Tables 1 and 2, constant-stress ALT samples of n1 = n2 = 50 were generated from
BurrXIIµ=0,ν=20(c, ki, αi), where ki = b0 + b1si and αi = a0 + a1si, i = 1, 2, to implement the
Metropolis–Hastings algorithm via Gibbs sampling in Algorithm 1 with s1 = sL = 0.45 and s2 = sH = 1
and the transition probabilities of N(a0, 1), N(a1, 1), N(b0, 1), N(b1, 1), and N(c, 1) were used to
generate the values of a0, a1, b0, b1, and c. Denote the first scenario of simulation with β1 = δ1 = a0,
β2 = δ2 = c, and β3 = δ3 = b0 by Infor-1, and denote the second scenario of simulation with β1 = a0,
β2 = c, β3 = b0, and δ1 = δ2 = δ3 = 1 by Infor-2. The Metropolis–Hastings algorithm via Gibbs
sampling in Algorithm 1 with N = 12, 000 and M = 2000 was repeated 1000 times to obtain 1000 Bayes
estimates of a0, a1, b0, b1, and c. Please note that we use normal distributions as transition probabilities
to generate the parameter values. Hence, the Metropolis–Hastings algorithm via Gibbs sampling and
using informative prior distributions are different from procedure BE-I. We use procedure BE-III to
denote the Bayesian estimation procedure that uses the Metropolis–Hastings algorithm via Gibbs
sampling and by using informative prior distributions.

The RB and RsqMSEs of each Bayes estimator are evaluated based on the obtained 1000 Bayes
estimates of a0, a1, b0, b1, and c through using procedure BE-III. All simulation results are reported
in Table 3. From Table 3, we can find that procedure BE-III can be used to quickly obtain reliable
Bayes estimates with one step based on ALT samples. Unlike procedure BE-II being time consuming
for implementation due to using two steps to obtain Bayes estimates, procedure BE-III is efficient in
performing Bayesian estimation for saving computation time. Because procedures BE-II and BE-III
are very competitive, procedure BE-II using non-informative prior distributions is recommended to
obtain reliable Bayes estimates of the model parameters when users do not have good knowledge to
set up hyperparameters in practical applications. For helping users to have a clear picture to use the
proposed Bayesian estimation methods, a flowchart is given in Figure 6 as a guideline.

Table 3. The RB and RsqMSEs of Bayes estimates via using procedure BE-III for n1 = n2 = 50.

Methods a0 a1 b0 b1 c

RB Infor-1 −0.1076 −0.0824 −0.2633 −0.1361 0.0195
Infor-2 −0.1347 −0.0992 −0.3210 −0.1667 0.0186

RsqMSE Infor-1 0.1113 −0.0910 0.2689 0.1549 0.0593
Infor-2 0.1394 −0.1094 0.3283 0.1884 0.0552
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Figure 6. The flowchart for using the proposed Bayesian estimation methods.

4. An Example

Xin et al. (2018) proposed a Bayesian estimation method to infer the reliability of oil-well pumps
using the BurrXII(θ). For sucker-rod oil pumping systems, the most important lifting equipment is the
oil-well pump, but it is weak and wears out over time due to cyclic loading, liquid corrosion, or sand
wear during the operation. Fatigue fracture or wear leakage could cause a critical failure for the oil-well
pump. Xin et al. (2018) used BurrXII(θ) to model the lifetimes of oil-well pumps with a type II censoring
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scheme. They showed that BurrXII(c = 1.982, k = 5.313, α = 5.694) can be a good distribution to
model the lifetimes of oil-well pumps in years. Assume that the constant-stress ALT method with
two stresses, s1 = 0.45 and s2 = 1, and parameters a0 = 5.694, a1 = −2.5, b0 = 5.313, and b1 = 2
is used to save the test time and cost on testing the oil-well pumps that do not fail within 2 months
or 1/6 year. Two ALT samples, each with size 50, were generated from BurrXIIµ,ν(c = 1.982, k1, α1)

and BurrXIIµ,ν(c = 1.982, k2, α2) with µ = 1/6 and ν = ∞, respectively, and displayed in Table 4 for
s1 = 0.45 and s2 = 1.

Table 4. The regenerated accelerated life test (ALT) samples of the oil-well pump example.

Low Stress

3.009, 1.434, 3.471, 3.937, 1.605, 2.015, 1.832, 1.501, 1.324, 0.825,
2.055, 2.847, 1.033, 1.612, 2.002, 2.020, 1.603, 1.080, 1.373, 1.849,
0.456, 0.903, 0.990, 1.089, 1.520, 1.151, 3.046, 0.457, 1.966, 0.841,
2.255, 2.542, 2.181, 1.637, 1.252, 0.907, 1.296, 1.304, 2.701, 0.556,
1.552, 3.132, 0.656, 1.097, 0.544, 2.814, 1.759, 1.041, 2.544, 1.853

High Stress

0.498, 1.871, 1.554, 0.679, 1.656, 1.225, 2.027, 1.458, 0.968, 0.667,
0.263, 1.436, 0.664, 2.435, 1.438, 0.638, 1.069, 1.042, 1.293, 0.386,
1.057, 2.197, 0.657, 1.352, 1.115, 0.587, 1.405, 0.635, 1.715, 1.592,
1.886, 0.850, 0.547, 0.783, 0.405, 1.675, 2.150, 0.743, 1.299, 0.766,
0.515, 1.281, 1.738, 2.615, 0.205, 1.058, 0.415, 0.223, 0.594, 1.687

The plots of hazard rates for these two stress levels are given in Figure 7. In view of Figure 7, it can
be noticed that the high-stress level results in higher hazard rate than the low-stress level does. Let the
domains of a0, a1, b0, b1, and c be Da0 = {1 ≤ a0 ≤ 10}, Da1 = {−5 ≤ a1 ≤ 0}, Db0 = {1 ≤ b0 ≤ 10},
Db1 = {1 ≤ b1 ≤ 5}, and Dc = {1 ≤ c ≤ 10}. Because BurrXIIµ,ν(θ) contains two shape parameters,
model identification could be a problem for modeling. One method to overcome this problem is to cut
the domain of c into two disjoint subdomains, for example, DI

c = {1 ≤ c ≤ 5} and DI I
c = {5 < c ≤ 10},

and to search the Bayes estimates of the model parameters for the domains of Da0 , Da1 , Db0 , Db1 , and DI
c

(labeled by domain I) and of Da0 , Da1 , Db0 , Db1 , and DI I
c (labeled by domain II), respectively. Moreover,

we also search the Bayes estimates of the model parameters based on the domains of Da0 , Da1 , Db0 , Db1 ,
and Dc (labeled by domain III). Then, we screen out the best set from the two sets of Bayes estimates
that are obtained from domain I and domain II to implement procedure BE-II. Non-informative prior
distributions are used to implement the proposed Metropolis–Hastings algorithm via Gibbs sampling
with N = 12, 000 and M = 2000.
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Figure 7. The plots of hazard rate for two stress levels: low stress (solid line) and high stress (dash line).

The Bayes estimates based on using domain I are ã0 = 6.408, ã1 = −2.246, b̃0 = 6.397, b̃1 = 2.567,
and c̃ = 2.084; the Bayes estimates via using domain II are ã0 = 1.966, ã1 = −0.913, b̃0 = 1.001,
b̃1 = 0.001, and c̃ = 7.450; and the Bayes estimates based on using domain III are ã0 = 4.125,
ã1 = −1.899, b̃0 = 4.164, b̃1 = 1.511, and c̃ = 3.435. The Markov chains obtained based on using
domain I, domain II, and domain III are given in Figures 8–12. Compared with the Markov chains
that are obtained using domain I and III, lower update rates for the Markov chains of b̃0 and b̃1, which
are obtained using domain II, are found in Figures 10 and 11. This fact indicates that the Markov
chains based on using domain II could not generate good Bayes estimates. Hence, we prefer to use
the Markov chains obtained based on using domain I to search the Bayes estimates of the model
parameters. The Bayes estimates α̃ = ã0 = 6.408, k̃ = b̃0 = 6.397, and c̃ = 2.084 can be used to infer the
life quality of oil-well pumps at the normal use condition.

Assume that we would like to infer the median lifetime of oil-well pumps; the empirical
distribution can be established based on the Markov chain for x̃p, which can be obtained using
Equation (6) and the 10,000 Markov chains of ã0, ã1, b̃0, b̃1, and c̃. The histogram of 10,000 Markov
chains for x̃0.5 is given in Figure 13, and the Bayes estimate of x0.5 is x̃0.5 = 2.8. The 95% credible
interval is (1.028, 4.546), which covers the true x0.5 = 2.115.
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Figure 8. The Markov chain of ã0 via using (a) domain I, (b) domain II, and (c) domain III: The straight
line is the true value of a0.
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Figure 9. The Markov chain of ã1 via using (a) domain I, (b) domain II, and (c) domain III: The straight
line is the true value of a1.
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Figure 10. The Markov chain of b̃0 via using (a) domain I, (b) domain II, and (c) domain III: The straight
line is the true value of b0.



Mathematics 2020, 8, 162 19 of 23

0 2000 4000 6000 8000 10000

0
1

2
3

4
5

6

(a)

M
ar

ko
v 

ch
ai

n

0 2000 4000 6000 8000 10000

0
1

2
3

4
5

6

(b)

M
ar

ko
v 

ch
ai

n

0 2000 4000 6000 8000 10000

0
1

2
3

4
5

6

(c)

M
ar

ko
v 

ch
ai

n

Figure 11. The Markov chain of b̃1 via using (a) domain I, (b) domain II, and (c) domain III: The straight
line is the true value of b1.
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Figure 12. The Markov chain of c̃ via using (a) domain I, (b) domain II, and (c) domain III: The straight
line is the true value of c.
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Figure 13. The histogram of 10,000 Markov chains of x̃0.5.

5. Concluding Remarks

In this study, the doubly truncated three-parameter BurrXII distribution is used to model the
lifetimes of reliable units and the lifetimes of units are collected under the constant-stress ALT method
to save the test time and sample resources. Because the maximum likelihood estimators of the model
parameters are difficult to be obtained using gradient algorithms to simultaneously solve all likelihood
equations, two Bayesian estimation procedures are proposed to obtain the Bayes estimates of the
model parameters through using the Metropolis–Hastings algorithm via Gibbs sampling for generating
Markov chains. The obtained Markov chains are used to establish the empirical distribution of the
lifetime quantile at the normal use condition. Moreover, the Bayes estimate and creditable interval of
the pth lifetime quantile at the normal use condition are obtained.

Intensive simulation studies were conducted to verify the performance of two proposed Bayesian
estimation procedures. We found that procedure BE-II outperforms procedure BE-I. Hence, procedure
BE-II with non-informative prior distributions is recommended to obtain reliable Bayes estimates of
the model parameters when users do not have sufficient knowledge to set up hyperparameters. For
an accelerated life testing that has two stress levels, low and high stress levels, at least 50 units for
each stress level of the ALT are required to use procedure BE-II to obtain reliable Bayes estimates of
the model parameters and to establish the empirical distribution of the estimator of a quantile at the
normal use condition. The proposed procedure BE-II can release the model identification problem
caused by using two shape parameters in the doubly truncated three-parameter BurrXII distribution.

A numerical example about the lifetimes of oil-well pumps is used for illustrating the applications
of the proposed Bayesian estimation methods. The doubly truncated three-parameter BurrXII
distribution is a generalized version of the BurrXII distribution. How to set up hyperparameters
in the prior distribution to obtain reliable Bayes estimators is an important issue. Machine learning
technique-based numerical methods could be competitive with the proposed methods. Extending the
proposed Bayesian estimation procedures to a generalized version of other lifetime distributions under
the constant-stress or step-stress ALT methods can be another good topic for study. These two topics
are interesting and will be studied in the future.
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